Exercise 53

Find an equation of the tangent line to the curve at the given point.

$$
y=\sin (\sin x), \quad(\pi, 0)
$$

Solution

A point on the tangent line is known, so all that's needed is its slope. Take a derivative of the given function

$$
y^{\prime}=\frac{d}{d x} \sin (\sin x)=\cos (\sin x) \cdot \frac{d}{d x}(\sin x)=\cos (\sin x) \cdot \cos x=\cos (\sin x) \cos x
$$

and evaluate it at $x=\pi$.

$$
y^{\prime}(\pi)=\cos (\sin \pi) \cos \pi=-1
$$

Therefore, the equation of the tangent line to $y=\sin (\sin x)$ at $(\pi, 0)$ is

$$
y-0=-1(x-\pi) .
$$

Below is a graph showing the function and the tangent line.

